
ISO 27001 COMPLIANCE REPORT

PROD of test.anilyekta - https://test.anilyekta.com.tr:8443

Report generated on Sep. 22, 2024 at 13:11 UTC

Summary

This section contains the scan summary

TARGET https://test.anilyekta.com.tr:8443 Report generated on Sep. 22, 2024 at 13:11 UTC

STARTED

Sep. 14, 2024, 15:23 UTC

ENDED

Sep. 14, 2024, 15:45 UTC

DURATION

22 minutes

SCAN PROFILE

Normal

NUMBER OF FINDINGS

CURRENT

SCAN

FROM LAST

SCAN

PENDING

FIX

HIGH

MEDIUM

LOW

1

2

5

= 0

= 0

= 0

1

1

5

TOP 5

HSTS header not enforced 1

Missing clickjacking protection 1

Missing Content Security Policy header 1

Browser content sniffing allowed 1

Referrer policy not defined 1

ISO 27001 REQUIREMENTS CHECKLIST

TESTED PASSED

A.5.14 Information transfer

A.5.33 Protection of records

A.5.34 Privacy and protection of personally identifiable information (PII)

A.8.2 Privileged access rights

A.8.3 Information access restriction

A.8.4 Access to source code

A.8.5 Secure authentication

A.8.8 Management of technical vulnerabilities

A.8.9 Configuration management

A.8.12 Data leakage prevention

A.8.15 Logging

A.8.24 Use of cryptography

A.8.25 Secure development life cycle

A.8.26 Application security requirements

A.8.27 Secure system architecture and engineering principles

A.8.28 Secure coding

A.8.29 Security testing in development and acceptance

Settings

This section contains the summary of settings that were used during this scan

LOGIN FORM

FIELD NAME FIELD VALUE

password ****

LOGOUT DETECTION

URL TO CHECK SESSION

https://test.anilyekta.com.tr/Giris/Cikis

LOGGED

OUT WHEN

ANY

FOUND

Url https://test.anilyekta.com.tr

SCAN PROFILE

Normal

Tests for all supported vulnerabilities. It's

the recommended scanning profile since it

offers the best quality/time ratio.

Technical Summary

The following table summarizes the findings, ordered by their severity

SEVERITY VULNERABILITY STATE

11 HIGH

SQL Injection

https://test.anilyekta.com.tr/Giris/Index

password

NOT FIXED

10 MEDIUM

SSL cookie without Secure flag

https://test.anilyekta.com.tr/Giris/Index

.AspNetCore.Session

NOT FIXED

6 MEDIUM
HSTS header not enforced

https://test.anilyekta.com.tr:8443
INVALID

7 LOW
Weak cipher suites enabled

https://test.anilyekta.com.tr:8443
NOT FIXED

3 LOW
Referrer policy not defined

https://test.anilyekta.com.tr:8443
NOT FIXED

5 LOW
Missing Content Security Policy header

https://test.anilyekta.com.tr:8443
NOT FIXED

4 LOW
Missing clickjacking protection

https://test.anilyekta.com.tr:8443
NOT FIXED

1 LOW
Browser content sniffing allowed

https://test.anilyekta.com.tr:8443
NOT FIXED

Exhaustive Test List

The following pages contain the list of vulnerabilities we tested in this scan, taking into consideration the

chosen profile

Reflected cross-site scripting

Cookie without HttpOnly flag

Open redirection

SQL Injection

Missing cross-site request forgery protection

Missing clickjacking protection

Stored cross-site scripting

Insecure crossdomain.xml policy

SSL cookie without Secure flag

HTTP TRACE method enabled

Directory Listing

ASP.NET tracing enabled

Path traversal

Remote File Inclusion

ASP.NET ViewState without MAC

Session Token in URL

Application error message

Private IP addresses disclosed

OS command injection

XML external entity injection

ASP.NET debugging enabled

Insecure Silverlight clientaccesspolicy.xml policy

PHP code injection

Server-side JavaScript injection

Ruby code injection

Python code injection

Server-side template injection

Unencrypted communications

HSTS header not enforced

Mixed content

Cross Origin Resource Sharing: Arbitrary Origin Trusted

Certificate with insufficient key size or usage, or

insecure signature algorithm

Expired TLS certificate

Insecure SSL protocol version 3 supported

Deprecated TLS protocol version 1.0 supported

Deprecated TLS protocol version 1.1 supported

Secure TLS protocol version 1.2 not supported

Weak cipher suites enabled

Server Cipher Order not configured

Untrusted TLS certificate

Heartbleed

Secure Renegotiation is not supported

TLS Downgrade attack prevention not supported

Drupal version with known vulnerabilities

WordPress version with known vulnerabilities

Joomla! version with known vulnerabilities

Certificate without revocation information

Full path disclosure

Log file disclosure

Backup file disclosure

HSTS header set in HTTP

HSTS header with low duration and no subdomain

protection

HSTS header with low duration

HSTS header does not protect subdomains

Inclusion of cryptocurrency mining script

Insecure SSL protocol version 2 supported

Browser content sniffing allowed

Referrer policy not defined

Insecure referrer policy

Potential DoS on TLS Client Renegotiation

JQuery library with known vulnerabilities

AngularJS library with known vulnerabilities

Bootstrap library with known vulnerabilities

JQuery Mobile library with known vulnerabilities

JQuery Migrate library with known vulnerabilities

TLS certificate about to expire

Moment.js library with known vulnerabilities

Prototype library with known vulnerabilities

React library with known vulnerabilities

SWFObject library with known vulnerabilities

TinyMCE library with known vulnerabilities

Backbone library with known vulnerabilities

Mustache library with known vulnerabilities

Handlebars library with known vulnerabilities

Dojo library with known vulnerabilities

jPlayer library with known vulnerabilities

CKEditor library with known vulnerabilities

DWR library with known vulnerabilities

Flowplayer library with known vulnerabilities

DOMPurify library with known vulnerabilities

Plupload library with known vulnerabilities

easyXDM library with known vulnerabilities

Ember library with known vulnerabilities

YUI library with known vulnerabilities

Sessvars library with known vulnerabilities

prettyPhoto library with known vulnerabilities

jQuery UI library with known vulnerabilities

WordPress plugin with known vulnerabilities

Invalid referrer policy

Insecure PHP Object deserialization

Missing Content Security Policy header

Insecure Content Security Policy

GraphQL Introspection enabled

Log4Shell

Vue.js library with known vulnerabilities

Spring Cloud SPEL Code Injection (CVE-2022-22963)

Spring4Shell

Knockout library with known vulnerabilities

Weak JWT HMAC secret

JWT accepting none algorithm

JWT signature is not being verified

Using jwk parameter to verify JWTs

JWT algorithm confusion

MongoDB Injection

Next.js library with known vulnerabilities

Underscore.js library with known vulnerabilities

Chart.js library with known vulnerabilities

JSZip library with known vulnerabilities

GraphQL Misconfiguration

Insecure browser XSS protection enabled

Hidden file found

Svelte library with known vulnerabilities

Axios library with known vulnerabilities

Cookie with SameSite attribute set to None

Server-side request forgery

CRLF injection

Froala library with known vulnerabilities

Highcharts library with known vulnerabilities

Supply Chain Compromise

PDF.js library with known vulnerabilities

Lodash library with known vulnerabilities

Select2 library with known vulnerabilities

UAParser.js library with known vulnerabilities

MathJax library with known vulnerabilities

Detailed Finding Descriptions

This section contains the findings in more detail, ordered by severity

11 SQL Injection

HIGH

CVSS SCORE

7.7
 CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N

METHOD

POST

PATH

https://test.anilyekta.com.tr/Giris/Index

REQUEST BODY

password

DESCRIPTION

SQL Injections are the most common form of injections because SQL databases are very popular in dynamic web applications. This

vulnerability allows an attacker to tamper existing SQL queries performed by the web application. Depending on the queries, the at

tacker might be able to access, modify or even destroy data from the database.

Since databases are commonly used to store private data, such as authentication information, personal user data and site content,

if an attacker gains access to it, the consequences are typically very severe, ranging from defacement of the web application to us

ers data leakage or loss, or even full control of the web application or database server.

EVIDENCE

As evidence that is possible to take advantage of this vulnerability, we have extracted the following data from the database engin

e:

DBMS: Microsoft SQL Server 2022

Databases: fastep, hsdb, moceh, telnHb

REQUEST

POST /Giris/Index HTTP/1.1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7

accept-encoding: gzip, deflate

accept-language: en-US

cache-control: no-cache

content-length: 78

content-type: application/x-www-form-urlencoded

origin: https://test.anilyekta.com.tr

pragma: no-cache

priority: u=0, i

referer: https://test.anilyekta.com.tr/

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: same-origin

sec-fetch-user: ?1

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

host: test.anilyekta.com.tr

username=&password=%27+OR+%271%27%3D%271%27+WAITFOR+DELAY+%270%3A0%3A10%27+--+

RESPONSE

HTTP/1.1 302 Found

Date: Sat, 14 Sep 2024 15:39:16 GMT

Connection: keep-alive

Cache-Control: no-cache,no-store

expires: -1

location: /Anasayfa

pragma: no-cache

set-cookie: .AspNetCore.Session=CfDJ8EFsZ14a709OnBUKQD3EYLn9ANGwFUaUGAHq7eoI62PE

MrIsqnSqqHZfJkCSiUkLpQYgRZZdePWih%2ByyyscKSz3hYZ5uGVJW2tej6S7COri5ABeHr6LTz4oa9M

GZLZYE%2FirUqkYC2FgKbemb5Rv6Pv%2FYZC%2FwcNVUElKhb%2FALkDoz; path=/;

samesite=lax; httponly

x-powered-by: ASP.NET

CF-Cache-Status: DYNAMIC

Report-To: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=8v

mcApA3fAKJrfHguQWvQlKQ2N0cHMU%2BPYSItZJHDUufLZ4DgrRs%2FOuRoIYVpDm%2B14x5z2iaI%2B

mfmnYxuv79johh5%2Fwx23rPx2i%2FP6UQl0O%2B8BZZC1egl1apwZivwjiJyqnHjq3zN4o%3D"}],"g

roup":"cf-nel","max_age":604800}

NEL: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

Server: cloudflare

CF-RAY: 8c3177c23aebbf4d-DUB

alt-svc: h3=":443"; ma=86400

content-length: 0

10 SSL cookie without Secure flag

MEDIUM

CVSS SCORE

4.3
 CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N

METHOD

POST

PATH

https://test.anilyekta.com.tr/Giris/Index

COOKIE

.AspNetCore.Session

DESCRIPTION

The cookie secure flag is intended to prevent browsers from submitting the cookie in any HTTP requests that use an unencrypted c

onnection, thus an attacker that is eavesdropping the connection will not be able to get that cookie.

A flag without the secure flag set will always be sent on every HTTP request that matches the scope of cookie, i.e. the domain for

which it is set. What this means is that if your application inadvertently makes an HTTP request (without encryption), this request

will carry the cookie and any attacker that can eavesdrop the victim traffic will be able to read that cookie.

If the cookie in question is the session cookie, the attacker will be able to hijack the victim account.

EVIDENCE

The cookie being set without the Secure flag:

set-cookie: .AspNetCore.Session=CfDJ8EFsZ14a709OnBUKQD3EYLn5JeOl8aPyaK%2B1N78jUPD7o6wwv%2FD89ZfiVXE837vlaoCpcgvRS

xbQv7oDkYN8iNAeYzF6kMfDOCrYw0THMyQeuN3kqrqk1%2FE1k4cLJm8tEaSciD0UeQMSx%2FeJSSIkevHL5jhXUdjR4A8482y35b5q; path=/;

 samesite=lax; httponly

REQUEST

POST /Giris/Index HTTP/1.1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7

accept-encoding: gzip, deflate

accept-language: en-US

cache-control: no-cache

content-length: 23

content-type: application/x-www-form-urlencoded

origin: https://test.anilyekta.com.tr

pragma: no-cache

priority: u=0, i

referer: https://test.anilyekta.com.tr/

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: same-origin

sec-fetch-user: ?1

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

host: test.anilyekta.com.tr

username=&password=1997

RESPONSE

HTTP/1.1 302

alt-svc: h3=":443"; ma=86400

cache-control: no-cache,no-store

cf-cache-status: DYNAMIC

cf-ray: 8c3163a1e8e2be37-DUB

date: Sat, 14 Sep 2024 15:25:21 GMT

expires: -1

location: /Anasayfa

nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

pragma: no-cache

report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=HU

SwhdKNSQSNxRFcMrb40MpjiD%2FqQSMEIfj0yz1SQHHBqKbN%2FpHgwLoLxo1CcQI%2B%2BXbzbLYyLs

YDUyn3Sgc2LHTxT12VBchgj9OpN1rr1pP%2Bne4bKaXN3g9URtBqHAwat2HVbZZ7GDA%3D"}],"group

":"cf-nel","max_age":604800}

server: cloudflare

set-cookie: .AspNetCore.Session=CfDJ8EFsZ14a709OnBUKQD3EYLn5JeOl8aPyaK%2B1N78jUP

D7o6wwv%2FD89ZfiVXE837vlaoCpcgvRSxbQv7oDkYN8iNAeYzF6kMfDOCrYw0THMyQeuN3kqrqk1%2F

E1k4cLJm8tEaSciD0UeQMSx%2FeJSSIkevHL5jhXUdjR4A8482y35b5q; path=/; samesite=lax;

httponly

x-powered-by: ASP.NET

content-length: 0

6 HSTS header not enforced

MEDIUM

CVSS SCORE

4.2
 CVSS:3.0/AV:A/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N

METHOD

GET

PATH

https://test.anilyekta.com.tr:8443

DESCRIPTION

The application does not force users to connect over an encrypted channel, i.e. over HTTPS. If the user types the site address in th

e browser without starting with https, it will connect to it over an insecure channel, even if there is a redirect to HTTPS later. Even

if the user types https, there may be links to the site in HTTP, forcing the user to navigate insecurely. An attacker that is able to in

tercept traffic between the victim and the site or spoof the site's address can prevent the user from ever connecting to it over an

encrypted channel. This way, the attacker is able to eavesdrop all communications between the victim and the server, including th

e victim's credentials, session cookie and other sensitive information.

EVIDENCE

Response headers, missing the Strict-Transport-Security header:

HTTP/2 200 OK

date: Sat, 14 Sep 2024 15:25:09 GMT

content-type: text/html; charset=utf-8

x-powered-by: ASP.NET

cf-cache-status: DYNAMIC

report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=kRwLq3%2Fky%2FLLhi4q2UjgRzXtikuv3C7

R%2BCTSZZr%2FWk7oBPVZZ0DcE%2B%2FxWAcDTs8j4rsqM3wnJ0SPdcnO4S%2B9kha4BTY2TwmFGfLgkzSyNWLCazibfMSLhMKhHzhe9BtkDN7rLc

90uozjYamATg%3D%3D"}],"group":"cf-nel","max_age":604800}

nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

server: cloudflare

cf-ray: 8c3163588fc679e3-DUB

content-encoding: br

alt-svc: h3=":8443"; ma=86400

REQUEST

GET / HTTP/2

host: test.anilyekta.com.tr:8443

accept: */*

accept-encoding: gzip, deflate, br

connection: keep-alive

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelyMRKT/0.1.0

RESPONSE

HTTP/2 200 OK

date: Sat, 14 Sep 2024 15:25:09 GMT

content-type: text/html; charset=utf-8

x-powered-by: ASP.NET

cf-cache-status: DYNAMIC

report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=kR

wLq3%2Fky%2FLLhi4q2UjgRzXtikuv3C7R%2BCTSZZr%2FWk7oBPVZZ0DcE%2B%2FxWAcDTs8j4rsqM3

wnJ0SPdcnO4S%2B9kha4BTY2TwmFGfLgkzSyNWLCazibfMSLhMKhHzhe9BtkDN7rLc90uozjYamATg%3

D%3D"}],"group":"cf-nel","max_age":604800}

nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

server: cloudflare

cf-ray: 8c3163588fc679e3-DUB

content-encoding: br

alt-svc: h3=":8443"; ma=86400

<!DOCTYPE html>

<html lang="tr">

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>test.anilyekta Giriş </title>

 <!-- Font Awesome -->

 <link rel="stylesheet" href="/Content/plugins/fontawesome-

free/css/all.min.css">

 <!-- Theme style -->

 <link rel="stylesheet" href="/Content/dist/css/adminlte.min.css">

</head>

<body class="hold-transition lockscreen dark-mode">

 <!-- Automatic element centering -->

 <div class="lockscreen-wrapper">

 <!-- START LOCK SCREEN ITEM -->

 <div class="lockscreen-item">

 <!-- lockscreen image -->

7 Weak cipher suites enabled

LOW

CVSS SCORE

4.2
 CVSS:3.0/AV:A/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N

PATH

https://test.anilyekta.com.tr:8443

DESCRIPTION

The server supports weak cipher suites for SSL/TLS connections. These cipher suites are currently considered broken and, dependin

g on the specific cipher suite, offer poor or no security at all. Thus defeating the purpose of using a secure communication channel

in the first place.

Any connection to the server using a weak cipher suite is at risk of being eavesdropped and tampered with by an attacker that ca

n intercept connections. This is more likely to occur to Wi-Fi clients.

Depending on the cipher suites used, a connection may be at an immediate risk of being intercepted.

The following issues need to be addressed:

CBC ciphers enabled. Potentially vulnerable to padding oracle attacks

EVIDENCE

The following weak ciphers are enabled:

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

3 Referrer policy not defined

LOW

CVSS SCORE

3.1
 CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/A:N

METHOD

GET

PATH

https://test.anilyekta.com.tr:8443

DESCRIPTION

The application does not prevent browsers from sending sensitive information to third party sites in the referer header.

Without a referrer policy, every time a user clicks a link that takes him to another origin (domain), the browser will add a referer

header with the URL from which he is coming from. That URL may contain sensitive information, such as password recovery tokens

or personal information, and it will be visible that other origin. For instance, if the user is at example.com/password_recovery?uni

que_token=14f748d89d and clicks a link to example-analytics.com, that origin will receive the complete password recovery URL i

n the headers and might be able to set the users password.
The same happens for requests made automatically by the applicatio

n, such as XHR ones.

Applications should set a secure referrer policy that prevents sensitive data from being sent to third party sites.

EVIDENCE

Response headers, missing the Referrer-Policy header:

date: Sat, 14 Sep 2024 15:25:09 GMT

content-type: text/html; charset=utf-8

x-powered-by: ASP.NET

cf-cache-status: DYNAMIC

report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=kRwLq3%2Fky%2FLLhi4q2UjgRzXtikuv3C7

R%2BCTSZZr%2FWk7oBPVZZ0DcE%2B%2FxWAcDTs8j4rsqM3wnJ0SPdcnO4S%2B9kha4BTY2TwmFGfLgkzSyNWLCazibfMSLhMKhHzhe9BtkDN7rLc

90uozjYamATg%3D%3D"}],"group":"cf-nel","max_age":604800}

nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

server: cloudflare

cf-ray: 8c3163588fc679e3-DUB

content-encoding: br

alt-svc: h3=":8443"; ma=86400

REQUEST

GET / HTTP/2

host: test.anilyekta.com.tr:8443

accept: */*

accept-encoding: gzip, deflate, br

connection: keep-alive

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelyMRKT/0.1.0

RESPONSE

HTTP/2 200 OK

date: Sat, 14 Sep 2024 15:25:09 GMT

content-type: text/html; charset=utf-8

x-powered-by: ASP.NET

cf-cache-status: DYNAMIC

report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=kR

wLq3%2Fky%2FLLhi4q2UjgRzXtikuv3C7R%2BCTSZZr%2FWk7oBPVZZ0DcE%2B%2FxWAcDTs8j4rsqM3

wnJ0SPdcnO4S%2B9kha4BTY2TwmFGfLgkzSyNWLCazibfMSLhMKhHzhe9BtkDN7rLc90uozjYamATg%3

D%3D"}],"group":"cf-nel","max_age":604800}

nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

server: cloudflare

cf-ray: 8c3163588fc679e3-DUB

content-encoding: br

alt-svc: h3=":8443"; ma=86400

<!DOCTYPE html>

<html lang="tr">

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>test.anilyekta Giriş </title>

 <!-- Font Awesome -->

 <link rel="stylesheet" href="/Content/plugins/fontawesome-

free/css/all.min.css">

 <!-- Theme style -->

 <link rel="stylesheet" href="/Content/dist/css/adminlte.min.css">

</head>

<body class="hold-transition lockscreen dark-mode">

 <!-- Automatic element centering -->

 <div class="lockscreen-wrapper">

 <!-- START LOCK SCREEN ITEM -->

 <div class="lockscreen-item">

 <!-- lockscreen image -->

5 Missing Content Security Policy header

LOW

CVSS SCORE

3.7
 CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

METHOD

GET

PATH

https://test.anilyekta.com.tr:8443

DESCRIPTION

The Content Security Policy (CSP) is an HTTP header through which site owners define a set of security rules that the browser must

follow when rendering their site. The most common usage is to define a list of approved sources of content that the browser can lo

ad. This can be used to effectively mitigate Cross-Site Scripting (XSS) and Clickjacking attacks.

CSP is flexible enough for you to define from where the browser can load JavaScript, Stylesheets, images, or fonts, among other op

tions. It can also be used in report mode only, a recommended approach before deploying strict rules in a live environment. Howev

er, please note that report mode does not protect you, it just logs policy violations.

EVIDENCE

Response headers, missing the Content-Security-Policy header:

date: Sat, 14 Sep 2024 15:25:09 GMT

content-type: text/html; charset=utf-8

x-powered-by: ASP.NET

cf-cache-status: DYNAMIC

report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=kRwLq3%2Fky%2FLLhi4q2UjgRzXtikuv3C7

R%2BCTSZZr%2FWk7oBPVZZ0DcE%2B%2FxWAcDTs8j4rsqM3wnJ0SPdcnO4S%2B9kha4BTY2TwmFGfLgkzSyNWLCazibfMSLhMKhHzhe9BtkDN7rLc

90uozjYamATg%3D%3D"}],"group":"cf-nel","max_age":604800}

nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

server: cloudflare

cf-ray: 8c3163588fc679e3-DUB

content-encoding: br

alt-svc: h3=":8443"; ma=86400

REQUEST

GET / HTTP/2

host: test.anilyekta.com.tr:8443

accept: */*

accept-encoding: gzip, deflate, br

connection: keep-alive

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelyMRKT/0.1.0

RESPONSE

HTTP/2 200 OK

date: Sat, 14 Sep 2024 15:25:09 GMT

content-type: text/html; charset=utf-8

x-powered-by: ASP.NET

cf-cache-status: DYNAMIC

report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=kR

wLq3%2Fky%2FLLhi4q2UjgRzXtikuv3C7R%2BCTSZZr%2FWk7oBPVZZ0DcE%2B%2FxWAcDTs8j4rsqM3

wnJ0SPdcnO4S%2B9kha4BTY2TwmFGfLgkzSyNWLCazibfMSLhMKhHzhe9BtkDN7rLc90uozjYamATg%3

D%3D"}],"group":"cf-nel","max_age":604800}

nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

server: cloudflare

cf-ray: 8c3163588fc679e3-DUB

content-encoding: br

alt-svc: h3=":8443"; ma=86400

<!DOCTYPE html>

<html lang="tr">

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>test.anilyekta Giriş </title>

 <!-- Font Awesome -->

 <link rel="stylesheet" href="/Content/plugins/fontawesome-

free/css/all.min.css">

 <!-- Theme style -->

 <link rel="stylesheet" href="/Content/dist/css/adminlte.min.css">

</head>

<body class="hold-transition lockscreen dark-mode">

 <!-- Automatic element centering -->

 <div class="lockscreen-wrapper">

 <!-- START LOCK SCREEN ITEM -->

 <div class="lockscreen-item">

 <!-- lockscreen image -->

4 Missing clickjacking protection

LOW

CVSS SCORE

6.5
 CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N

METHOD

GET

PATH

https://test.anilyekta.com.tr:8443

DESCRIPTION

A frameable response occurs when one or multiple pages can be used on an iframe on any website. This allows the clickjackin

g attack to be used.

Clickjacking is when an attacker a hidden iframe with multiple transparent or opaque layers above it, to trick a user into clicking

on a button or link on the iframe when they were intending to click on the the top level page. Thus, the attacker is "hijacking" clic

ks meant for the top level page and routing them to the iframe.

Using a similar technique, keystrokes can also be hijacked. With a carefully crafted combination of stylesheets, iframes, and text bo

xes, a user can be led to believe they are typing in the password to their email or bank account, but are instead typing into an inv

isible frame controlled by the attacker.

EVIDENCE

Response headers, missing the X-Frame-Options header:

date: Sat, 14 Sep 2024 15:25:09 GMT

content-type: text/html; charset=utf-8

x-powered-by: ASP.NET

cf-cache-status: DYNAMIC

report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=kRwLq3%2Fky%2FLLhi4q2UjgRzXtikuv3C7

R%2BCTSZZr%2FWk7oBPVZZ0DcE%2B%2FxWAcDTs8j4rsqM3wnJ0SPdcnO4S%2B9kha4BTY2TwmFGfLgkzSyNWLCazibfMSLhMKhHzhe9BtkDN7rLc

90uozjYamATg%3D%3D"}],"group":"cf-nel","max_age":604800}

nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

server: cloudflare

cf-ray: 8c3163588fc679e3-DUB

content-encoding: br

alt-svc: h3=":8443"; ma=86400

REQUEST

GET / HTTP/2

host: test.anilyekta.com.tr:8443

accept: */*

accept-encoding: gzip, deflate, br

connection: keep-alive

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelyMRKT/0.1.0

RESPONSE

HTTP/2 200 OK

date: Sat, 14 Sep 2024 15:25:09 GMT

content-type: text/html; charset=utf-8

x-powered-by: ASP.NET

cf-cache-status: DYNAMIC

report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=kR

wLq3%2Fky%2FLLhi4q2UjgRzXtikuv3C7R%2BCTSZZr%2FWk7oBPVZZ0DcE%2B%2FxWAcDTs8j4rsqM3

wnJ0SPdcnO4S%2B9kha4BTY2TwmFGfLgkzSyNWLCazibfMSLhMKhHzhe9BtkDN7rLc90uozjYamATg%3

D%3D"}],"group":"cf-nel","max_age":604800}

nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

server: cloudflare

cf-ray: 8c3163588fc679e3-DUB

content-encoding: br

alt-svc: h3=":8443"; ma=86400

<!DOCTYPE html>

<html lang="tr">

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>test.anilyekta Giriş </title>

 <!-- Font Awesome -->

 <link rel="stylesheet" href="/Content/plugins/fontawesome-

free/css/all.min.css">

 <!-- Theme style -->

 <link rel="stylesheet" href="/Content/dist/css/adminlte.min.css">

</head>

<body class="hold-transition lockscreen dark-mode">

 <!-- Automatic element centering -->

 <div class="lockscreen-wrapper">

 <!-- START LOCK SCREEN ITEM -->

 <div class="lockscreen-item">

 <!-- lockscreen image -->

1 Browser content sniffing allowed

LOW

CVSS SCORE

4.7
 CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:L/I:L/A:N

METHOD

GET

PATH

https://test.anilyekta.com.tr:8443

DESCRIPTION

The application allows browsers to try to mime-sniff the content-type of the responses. This means the browser may try to guess t

he content-type by looking at the response content, and render it in way it was not intended to. This behavior may lead to the exe

cution of malicious code, for instance, to explore an XSS vulnerability.

Applications should disable this behavior, forcing browsers to honor the content-type specified in the response. Without a specific c

ontent-type set browsers will default to render the content as text, turning XSS payloads innocuous.

Disabling mime-sniffing should be seen as an extra layer of defense against XSS, and not as replacement of the recommended XSS

prevention techniques.

EVIDENCE

Response headers, missing the X-Content-Type-Options header:

date: Sat, 14 Sep 2024 15:25:09 GMT

content-type: text/html; charset=utf-8

x-powered-by: ASP.NET

cf-cache-status: DYNAMIC

report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=kRwLq3%2Fky%2FLLhi4q2UjgRzXtikuv3C7

R%2BCTSZZr%2FWk7oBPVZZ0DcE%2B%2FxWAcDTs8j4rsqM3wnJ0SPdcnO4S%2B9kha4BTY2TwmFGfLgkzSyNWLCazibfMSLhMKhHzhe9BtkDN7rLc

90uozjYamATg%3D%3D"}],"group":"cf-nel","max_age":604800}

nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

server: cloudflare

cf-ray: 8c3163588fc679e3-DUB

content-encoding: br

alt-svc: h3=":8443"; ma=86400

REQUEST

GET / HTTP/2

host: test.anilyekta.com.tr:8443

accept: */*

accept-encoding: gzip, deflate, br

connection: keep-alive

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelyMRKT/0.1.0

RESPONSE

HTTP/2 200 OK

date: Sat, 14 Sep 2024 15:25:09 GMT

content-type: text/html; charset=utf-8

x-powered-by: ASP.NET

cf-cache-status: DYNAMIC

report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=kR

wLq3%2Fky%2FLLhi4q2UjgRzXtikuv3C7R%2BCTSZZr%2FWk7oBPVZZ0DcE%2B%2FxWAcDTs8j4rsqM3

wnJ0SPdcnO4S%2B9kha4BTY2TwmFGfLgkzSyNWLCazibfMSLhMKhHzhe9BtkDN7rLc90uozjYamATg%3

D%3D"}],"group":"cf-nel","max_age":604800}

nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

server: cloudflare

cf-ray: 8c3163588fc679e3-DUB

content-encoding: br

alt-svc: h3=":8443"; ma=86400

<!DOCTYPE html>

<html lang="tr">

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>test.anilyekta Giriş </title>

 <!-- Font Awesome -->

 <link rel="stylesheet" href="/Content/plugins/fontawesome-

free/css/all.min.css">

 <!-- Theme style -->

 <link rel="stylesheet" href="/Content/dist/css/adminlte.min.css">

</head>

<body class="hold-transition lockscreen dark-mode">

 <!-- Automatic element centering -->

 <div class="lockscreen-wrapper">

 <!-- START LOCK SCREEN ITEM -->

 <div class="lockscreen-item">

 <!-- lockscreen image -->

Glossary

Term Definition

Vulnerability

A type of security weakness that might occur in applications (e.g. Broken Authentication,

Information Disclosure).

Some vulnerabilities take their name not from the weakness itself, but from the attack that exploits

it (e.g. SQL Injection, XSS, etc.).

Findings An instance of a Vulnerability that was found in an application.

Severity Legend

To each finding is attributed a severity which sums up its overall risk

The severity is a compound metric that encompasses the likelihood of the finding being found and exploited

by an attacker, the skill required to exploit it, and the impact of such exploitation. A finding that is easy to

find, easy to exploit and the exploitation has high impact, will have a greater severity.

Different findings of the same type could have a different severity: we consider multiple factors to increase

or decrease it, such as if the application has an authenticated area or not.

The following table describes the different severities:

Severity Description Examples

HIGH

These findings may have a direct impact in the application security,

either clients or service owners, for instance by granting the

attacker access to sensitive information.

SQL Injection

OS Command Injection

MEDIUM

Medium findings usually don't have immediate impact alone, but

combined with other findings may lead to a successful compromise

of the application.

Cross-site Request Forgery

Unencrypted Communications

LOW
Findings where either the exploit is not trivial, the impact is low, or

the finding cannot be exploited by itself.

Directory Listing

Clickjacking

Category Descriptions

The following pages contain descriptions of each vulnerability. For each vulnerability you will find a section

explaining its impact, causes and prevention methods.

These descriptions are very generic, and whenever they are not enough to understand or fix a given finding,

more information is provided for that finding in the Detailed Finding Descriptions section.

SQL Injection

Description

SQL Injections are the most common form of injections because SQL databases are very popular in dynamic web applications. This vulnerability

allows an attacker to tamper existing SQL queries performed by the web application. Depending on the queries, the attacker might be able to

access, modify or even destroy data from the database.

Since databases are commonly used to store private data, such as authentication information, personal user data and site content, if an

attacker gains access to it, the consequences are typically very severe, ranging from defacement of the web application to users data leakage

or loss, or even full control of the web application or database server.

Fix

To fix an SQL Injection you should use Prepared Statements. If an application exclusively uses prepared statements, the developer can be sure

that no SQL injection will occur.
Prepared Statements can be thought of as a kind of compiled template for the SQL that an application wants

to run, that can be customized using variable parameters.

As an added bonus, if you're executing the same query several times, then it'll be even faster than when you're not using prepared

statements. This is because when using prepared statements, the query needs to be parsed (prepared) only once, but can be executed multiple

times with the same or different parameters.

SSL cookie without Secure flag

Description

The cookie secure flag is intended to prevent browsers from submitting the cookie in any HTTP requests that use an unencrypted connection,

thus an attacker that is eavesdropping the connection will not be able to get that cookie.

A flag without the secure flag set will always be sent on every HTTP request that matches the scope of cookie, i.e. the domain for which it is

set. What this means is that if your application inadvertently makes an HTTP request (without encryption), this request will carry the cookie and

any attacker that can eavesdrop the victim traffic will be able to read that cookie.

If the cookie in question is the session cookie, the attacker will be able to hijack the victim account.

Fix

To fix a vulnerability of this type, you just need to set the Secure flag on the vulnerable cookie, effectively preventing it from being transmitted

in unencrypted connections, i.e. over HTTP.

Depending on the language and technologies you are using, setting the Secure flag could mean to enable it or setting it to true, either on the

code of the application itself or in a configuration file of the webserver or Content Management System (CMS) you are using.

HSTS header not enforced

Description

The application does not force users to connect over an encrypted channel, i.e. over HTTPS. If the user types the site address in the browser

without starting with https, it will connect to it over an insecure channel, even if there is a redirect to HTTPS later. Even if the user types https,

there may be links to the site in HTTP, forcing the user to navigate insecurely. An attacker that is able to intercept traffic between the victim

and the site or spoof the site's address can prevent the user from ever connecting to it over an encrypted channel. This way, the attacker is

able to eavesdrop all communications between the victim and the server, including the victim's credentials, session cookie and other sensitive

information.

Fix

The application should instruct web browsers to only access the application using HTTPS. To do this, enable HTTP Strict Transport Security

(HSTS).

You can do so by sending the Strict-Transport-Security header so that browsers will always enforce a secure connection to your site,

regardless of the user typing https in the address.

An HSTS enabled server includes the following header in an HTTPS response: Strict-Transport-Security: max-

age=15768000;includeSubdomains
Please bear in mind that only HTTPS responses should have the HSTS header, because browsers ignore this

header when sent over HTTP.

When the browser sees this, it will remember, for the given number of seconds, that the current domain should only be contacted over HTTPS.

In the future, if the user types http:// or omits the scheme, HTTPS is the default. In this example, which includes the option

includeSubdomains, all requests to URLs in the current domain and subdomains will go over HTTPS. When you set includeSubdomains make

sure you can serve all requests over HTTPS! It is, however, important that you add the option includeSubdomains whenever is possible.

Instead of changing your application, you should have the web server setting the header for you. If you are using Apache, just enable

mod_headers and add the following line to your virtual host configuration: Header always set Strict-Transport-Security "max-

age=15768000;includeSubdomains"

If you are using NGINX, just add this line to your host configuration: add_header Strict-Transport-Security max-

age=15768000;includeSubdomains

Note that because HSTS is a "trust on first use" (TOFU) protocol, a user who has never accessed the application will never have seen the HSTS

header, and may therefore be vulnerable to aforementioned SSL stripping attacks. To mitigate this risk, you can optionally ask the browser

vendors to include your domain in a preloaded list, included in the browser, and afterwards add the 'preload' flag to the HSTS header.

Weak cipher suites enabled

Description

The server supports weak cipher suites for SSL/TLS connections. These cipher suites are currently considered broken and, depending on the

specific cipher suite, offer poor or no security at all. Thus defeating the purpose of using a secure communication channel in the first place.

Any connection to the server using a weak cipher suite is at risk of being eavesdropped and tampered with by an attacker that can intercept

connections. This is more likely to occur to Wi-Fi clients.

Depending on the cipher suites used, a connection may be at an immediate risk of being intercepted.

Fix

To stop using weak cipher suites, you must configure your web server cipher suite list accordingly.

Ideally, as a general guideline, you should remove any cipher suite containing references to NULL, anonymous, export, DES, 3DES, RC4, and

MD5 algorithms. Additionally, remove any cipher suite containing ciphers with less than 128 bit security. You should also remove any CBC

ciphers, as CBC ciphers may be vulnerable to padding oracle attacks.

You should enable ECDHE and GCM cipher suites to ensure proper security. Please note that these modern ciphers are available in newer

versions of TLS only. You will need to enable TLSv1.2 and above (for GCM cipher suites).

To achieve this, we propose a modern cipher suite, based on these recommendations:

TLS13-AES-256-GCM-SHA384:TLS13-CHACHA20-POLY1305-SHA256:TLS13-AES-128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-

AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-

GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256

For most systems, changing TLS cipher suites, requires a change on the web server configuration file. Please refer to your web server

documentation on how to do so.

Referrer policy not defined

Description

https://blog.probely.com/how-to-deploy-modern-tls-in-2018-1b9a9cafc454

The application does not prevent browsers from sending sensitive information to third party sites in the referer header.

Without a referrer policy, every time a user clicks a link that takes him to another origin (domain), the browser will add a referer header with

the URL from which he is coming from. That URL may contain sensitive information, such as password recovery tokens or personal information,

and it will be visible that other origin. For instance, if the user is at example.com/password_recovery?unique_token=14f748d89d and clicks a

link to example-analytics.com, that origin will receive the complete password recovery URL in the headers and might be able to set the users

password.
The same happens for requests made automatically by the application, such as XHR ones.

Applications should set a secure referrer policy that prevents sensitive data from being sent to third party sites.

Fix

This problem can be fixed by sending the header Referrer-Policy with a secure and valid value.
There are different values available, but not

all are considered secure. Please note that this header only supports one directive at a time. The following list explains each one and it is

ordered from the safest to the least safe:

no-referrer: never send the header.

same-origin: send the full URL to requests to the same origin (exact scheme + domain)

strict-origin: send only the domain part of the URL, but sends nothing when downgrading to HTTP.

origin: similar to strict-origin without downgrade restriction.

strict-origin-when-cross-origin: send full URL within the same origin, but only the domain part when sending to another origin. It

sends nothing when downgrading to HTTP.

origin-when-cross-origin: similar to strict-origin-when-cross-origin without the downgrade restriction.

Insecure options:
 * no-referrer-when-downgrade: sends the full URL when the scheme does not change. It will send if both origins are, for

instance, HTTP.
 * unsafe-url: always sent the full URL

A possible, safe option is strict-origin, so the header would look like this:

Referrer-Policy: strict-origin

It is normally easy to enable the header in the web server configuration file, but it can also be done at the application level.

Please note that the referrer header is written referer, with a single r but the referrer policy header is properly written, with rr: Referrer-

Policy.

Missing Content Security Policy header

Description

The Content Security Policy (CSP) is an HTTP header through which site owners define a set of security rules that the browser must follow

when rendering their site. The most common usage is to define a list of approved sources of content that the browser can load. This can be

used to effectively mitigate Cross-Site Scripting (XSS) and Clickjacking attacks.

CSP is flexible enough for you to define from where the browser can load JavaScript, Stylesheets, images, or fonts, among other options. It can

also be used in report mode only, a recommended approach before deploying strict rules in a live environment. However, please note that

report mode does not protect you, it just logs policy violations.

Fix

You can define a Content Security Policy by setting a header in your application. The header can look like this:

Content-Security-Policy: frame-ancestors 'none'; default-src 'self', script-src '*://*.example.com:*'

In this example, the frame-ancestors directive set to 'none' indicates that the page cannot be placed inside a frame, not even by itself.
The

default-src defines the loading policy for all resources, in this case, they can be loaded from the current origin (protocol + domain + port).

The example sets a more specific policy for scripts, through the script-src, restricting script loading to any subdomain of example.com.

The policy can be with different directives, and there are other less strict options for the directives above.

Missing clickjacking protection

Description

A frameable response occurs when one or multiple pages can be used on an iframe on any website. This allows the clickjacking attack to

be used.

Clickjacking is when an attacker a hidden iframe with multiple transparent or opaque layers above it, to trick a user into clicking on a button

or link on the iframe when they were intending to click on the the top level page. Thus, the attacker is "hijacking" clicks meant for the top

level page and routing them to the iframe.

Using a similar technique, keystrokes can also be hijacked. With a carefully crafted combination of stylesheets, iframes, and text boxes, a user

can be led to believe they are typing in the password to their email or bank account, but are instead typing into an invisible frame controlled

by the attacker.

Fix

The recommended way to prevent clickjacking is to send a header that instructs the browser to not allow arbitrary framing, typically from other

domains.

The current recommendation is to use the Content-Security-Policy HTTP header (CSP) with a frame-ancestors directive. This header obsoletes

the X-Frame-Options HTTP header.

To use CSP you need the following header:

Content-Security-Policy: frame-ancestors 'none'

The header might contain more directives, and there are other less strict options for the frame-ancestors directive.

If you want to use X-Frame-Options, send the proper HTTP header, with one of the following directives:

X-Frame-Options: DENY

X-Frame-Options: SAMEORIGIN

A third directive, ALLOW-FROM is no longer supported by modern browsers.

If you specify DENY, all attempts to load the page in a frame will fail. SAMEORIGIN will allow the page to be loaded in the site including it in

a frame is the same as the one serving the page.

The most common option is DENY when there is no need to load your pages on some other site.

To configure IIS to send the Content-Security-Policy header, add this your site's Web.config file:

<system.webServer>

 ...

 <httpProtocol>

 <customHeaders>

 <add name="Content-Security-Policy" value="frame-ancestors 'none'" />

 </customHeaders>

 </httpProtocol>

 ...

</system.webServer>

To configure IIS to send the X-Frame-Options header, add this your site's Web.config file:

<system.webServer>

 ...

 <httpProtocol>

 <customHeaders>

 <add name="X-Frame-Options" value="DENY" />

 </customHeaders>

 </httpProtocol>

 ...

</system.webServer>

Browser content sniffing allowed

Description

The application allows browsers to try to mime-sniff the content-type of the responses. This means the browser may try to guess the content-

type by looking at the response content, and render it in way it was not intended to. This behavior may lead to the execution of malicious

code, for instance, to explore an XSS vulnerability.

Applications should disable this behavior, forcing browsers to honor the content-type specified in the response. Without a specific content-type

set browsers will default to render the content as text, turning XSS payloads innocuous.

Disabling mime-sniffing should be seen as an extra layer of defense against XSS, and not as replacement of the recommended XSS prevention

techniques.

Fix

This problem can be fixed by sending the header X-Content-Type-Options with value nosniff, to force browsers to disable the content-type

guessing (the sniffing).

The header should look this:

X-Content-Type-Options: nosniff

It is normally easy to enable the header in the web server configuration file, but it can also be done at application level.

